речного сечения тора равны соответственно R и r. Объемная плотность электрического заряда равна ρ .

№ 1.С.10.[c] Используя лишь принцип суперпозиции (5) доказать, что проекция вектора напряженности электрического поля равномерно заряженной плоскости с поверхностной плотностью σ на ось z (ось, перпендикулярная заряженной плоскости) равна $E_z = 2\pi k \sigma \operatorname{sign} z$.

	Вариант														
Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Nº 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Nº 2	6	7	8	9	10	8	9	10	2	4	15	5	1	11	3
№ 3	11	12	13	14	15	12	13	14	3	6	4	3	6	9	6
Задача															
Nº 1	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3
Nº 2	10	9	8	7	8	7	9	10	9	10	7	8	7	8	10

Таблица 1: список вариантов и соответствующих номеров вопросов и задач для самостоятельного решения настоящего параграфа.

Семинар № 2. Теорема Остроградского-Гаусса

Теоретический минимум

 Φ ормулировка: поток вектора напряженности электрического поля (\vec{E}) через замкнутую поверхность (S) произвольной формы пропорционален суммарному алгебраическому заряду (q_s) , находящемуся внутри данной поверхности, т.е.

$$\oint_{S} \vec{E}d\vec{S} = 4\pi k \, q_{S}. \tag{26}$$

Дифференциальная форма теоремы (4-ое уравнение Максвелла в вакууме):

$$div\vec{E} = 4\pi k \,\rho,\tag{27}$$

здесь ρ - объемная плотность электрического заряда.

Данная теорема наиболее часто используется в расчете электрических полей систем с а) зеркальной, б) аксиальной, в) сферической симметрией.

При решении задач, посвященных расчету напряженности электрического поля с помощью теоремы Остроградского-Гаусса, следует придерживаться следующего алгоритма.

1. Выясняем какие симметрии присутствуют в системе.

- 2. Строим воображаемую замкнутую поверхность, охватывающую систему зарядов, результирующее поле которых мы хотим найти в точке наблюдения А. При этом поверхность должна удовлетворять требованиям: а) она должна содержать точку наблюдения А; б) форма поверхности должна определяться тем же видом симметрии, что и исходная система зарядов.
- 3. Для выбранной поверхности проводим расчет потока вектора \vec{E} через замкнутую поверхность. В частности

$$N = \oint \vec{E} d\vec{S} = \begin{cases} 4\pi r^2 E, & \text{в случае сферической симметрии,} \\ 2\pi \rho H E, & \text{в случае цилиндрической симметрии} \end{cases}$$
, (28)

здесь r-радиус воображаемой сферы, ρ -радиус воображаемого цилиндра, H - его высота.

4)Выполняем расчет электрического заряда внутри вооброжаемой поверхности.

$$q_{S} = \left\{ \begin{array}{l} \int_{L} \lambda d\ell, & \text{в случае линейных зарядов,} \\ \int_{S'} \sigma dS, & \text{в случае поверхностных зарядов,} \\ \int_{V'} \rho dV, & \text{в случае объемных зарядов} \end{array} \right\}, \tag{29}$$

здесь L-длина кривой, вдоль которой расположен заряд q_s с линейной плотностью λ ; S'-площадь поверхности, по которой распределен заряд q_s с поверхностной плотностью σ ; V'-объем пространства, занимаемого электрическим зарядом q_s с объемной плотностью ρ .

5. Полученные выражения для потока и электрического заряда q_s , подставляем в (26), откуда выражаем поле E.

Рекомендуемая литература: [1], §§ 3, 4; [2], §§ 1.9-1.13; [3], §§ 5, 6.

Примеры решения задач

№ 1.П.1.[б] Точечный заряд q расположен в центре куба. Чему равен поток вектора \vec{E} через одну из граней куба? Заряд смещен в одну из вершин куба. Чему теперь равен поток \vec{E} через эту грань?

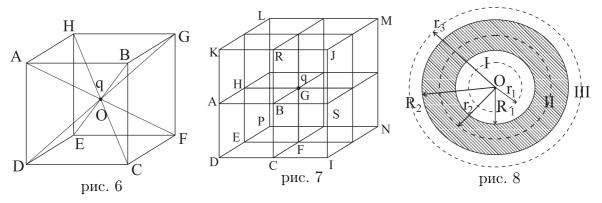
Решение

Согласно теореме Остроградского-Гаусса, поток через всю поверхность куба равен $4\pi kq$. Так как заряд находится в центре куба (равноудален от каждой грани, см. рис. 6), то поток через каждую грань будет один и тот же, и он равен:

$$N_1 = \frac{1}{6}N = \frac{2}{3}\pi kq.$$

Предположим, что точечный заряд q сместили в точку G. Вычислим поток через грань ABCD. Для этого достроим исходную систему до нового куба DIJKLMNP (см. рис. 7). Ситуация аналогична предыдущему случаю. Поток вектора \vec{E} через грань DIJK равен $\frac{2}{3}\pi kq$. Площадки ABCD, BSIC, KRBA, RJSB находятся в одинаковых условиях (видны под одним и тем же углом из точки G). В результате поток через площадку ABCD равен $\frac{1}{4}$ потока через грань DIJK, т. е. $\frac{1}{6}\pi kq$.

Other: $N_1 = \frac{2}{3}\pi kq$; $N_2 = \frac{1}{6}\pi kq$.



№ 2.П.2.[б] Найти напряженность электрического поля сферического слоя с зарядом Q, ограниченного сферами радиусов R_1 и R_2 .

Решение

Данная физическая система обладает сферической симметрией и разбивает все пространство на 3 подпространства (см. рис. 8). Определим напряженность электрического поля в каждом из подпространств. Вычислим поток вектора \vec{E} через поверхность S. В качестве такой поверхности будем использовать сферу с центром в точке O и радиуса r_1 . Учитывая сферически симметричный характер распределения электрического заряда и используя принцип суперпозиции электрических полей, можно строго показать, что вектор \vec{E} в любой точке пространства должен быть направлен вдоль радиуса-вектора \vec{r} (начало отсчета находится в точке O). Поскольку $d\vec{S} = dS\vec{n}_r = dS\frac{\vec{r}}{r}$, то $\vec{E} \uparrow \uparrow d\vec{S}$, в итоге

$$N = \oint_{S} \vec{E} d\vec{S} = \oint_{S} E dS = E \oint_{S} dS = E \cdot S = 4\pi r_1^2 E \tag{30}$$

с другой стороны $q_S^I = 0$, внутри сферы радиуса r_1 , следовательно, поле $E_I = 0$, в силу произвола в выборе r_1 .

Рассмотрим подпространство II. Рассуждая аналогично предыдущему случаю, для сферы радиуса r_2 , вычисляем поток по аналогии с

(30) с заменой $r_1 \to r_2$. Вычислим заряд q_S , содержащийся внутри сферы радиуса r_2 . Поскольку заряд равномерно распределен по объему сферического слоя, то

$$q_S^{II} = \frac{4}{3}\pi\rho(r_2^3 - R_1^3) = \frac{Q(r_2^3 - R_1^3)}{R_2^3 - R_1^3}, \quad \rho = \frac{Q}{\frac{4}{3}\pi(R_2^3 - R_1^3)},$$
 следовательно $E_{II} = \frac{kQ(r_2^3 - R_1^3)}{r_2^2(R_2^3 - R_1^3)}.$ (31)

И, наконец, в области III рассмотрим сферу радиуса r_3 . Очевидно, что $q_S^{III}=Q$, поэтому

$$4\pi r_3^2 E_{III} = 4\pi kQ, \implies E_{III} = \frac{kQ}{r_3^2}.$$

Otbet:
$$E = \left\{ \begin{array}{l} 0, & r \leq R_1, \\ \frac{kQ(r^3 - R_1^3)}{r^2(R_2^3 - R_1^3)}, & R_1 < r \leq R_2, \\ \frac{kQ}{r^2}, & r > R_2. \end{array} \right\}, \quad \vec{E} = E \cdot \vec{n}_r.$$
 (32)

<u>Замечание</u>: на основе последнего результата легко получить выражение для поля шара радиуса R, равномерно заряженного по объему зарядом Q. Необходимо учесть, что в случае шара $R_1 = 0$, $R_2 = R$, тогда

$$E_{\text{III}} = \left\{ \begin{array}{l} \frac{kQr}{R^3}, & r \leq R, \\ \frac{kQ}{r^2}, & r > R. \end{array} \right\}, \quad \vec{E}_{\text{III}} = E_{\text{III}} \cdot \vec{n}_r. \tag{33}$$

№ 2.П.3.[б] Пространство заполнено зарядом с объемной плотностью $\rho = \rho_0 (1 + r^3/R^3)^{-1}$, ρ_0 , R-константы, r-расстояние от центра системы до точки наблюдения. Вычислить модуль напряженности электрического поля. Найти максимальное значение E_m и соответствующее ему расстояние r_m .

Решение

Рассматриваемая система обладает сферической симметрией, поэтому в качестве воображаемой поверхности выберем сферу с центром, расположенном в центре системы, и радиусом r. Поток вектора \vec{E} через эту поверхность будет определяться первым результатом системы (28). Поскольку в системе присутствуют объемные заряды, то заряд находящийся внутри данной сферы определяется третьим выражением системы (29). Перейдем в сферическую систему координат, тогда

$$q_S = \int_0^r \rho_0 \frac{r'^2 dr'}{(1+r'^3/R^3)} \int d\Omega = \frac{4\pi\rho_0}{3} \int_0^r \frac{dr'^3}{(1+r'^3/R^3)} = \frac{4\pi\rho_0 R^3}{3} \ln\left(\frac{r^3 + R^3}{R^3}\right).$$

Следовательно, поле системы определяется выражением

$$E(r) = \frac{4\pi\rho_0 R^3}{3r^2} \ln\left(\frac{r^3 + R^3}{R^3}\right). \tag{34}$$

Для определения максимального значения поля (E_m) необходимо исследовать (34) на экстремум:

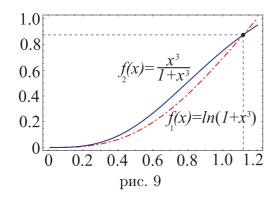
$$E'_r = \frac{4\pi\rho_0 R^3}{3} \left[\frac{-2}{r^3} \ln\left(\frac{r^3 + R^3}{R^3}\right) + \frac{3}{r^3 + R^3} \right] = 0,$$

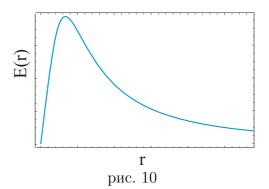
откуда $\ln(1 + x^3) = \frac{3}{2} \frac{x^3}{x^3 + 1}$, где $x = \frac{r}{R}$. (35)

Решая уравнение (35) относительно переменной x, например, графически (см. рис. 9), получаем значение x=1.12 и соответствующее значение r=1.12R. Из рис. 10, демонстрирующего поведение функции E(r), следует, что найденная точка экстремума – точка максимума. Т.о. $r_m=1.12R$. Максимальное значение поля, E_m определяется выражением

$$E_m = E(r_m) = \frac{4\pi\rho_0 R^3}{3r_m^2} \ln\left(\frac{r_m^3 + R^3}{R^3}\right) = 2.51\rho_0 R.$$

Otbet:
$$E = \frac{4\pi\rho_0 R^3}{3r^2} \ln\left(\frac{r^3 + R^3}{R^3}\right)$$
; $E_m = 2.51\rho_0 R$, $r_m = 1.12R$.





№ 2.П.4.[6] Определить напряженность электрического поля внутри и вне безграничного плоского слоя толщины 2d, равномерно заряженного по объему с плотностью ρ .

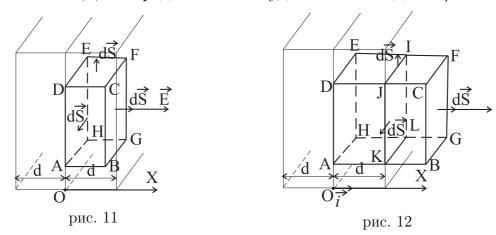
Решение

Данная система обладает зеркальной симметрией относительно плоскости, параллельной образующим слоя и отстоящей от последних на расстоянии d. Указанный факт приводит к следующим утверждениям:

а) напряженность электрического поля в плоскости симметрии равна нулю, поскольку для любой точки O этой плоскости весь слой может быть разбит на пары элементарных зарядов, зеркально симметричных

относительно т. O. Поля этих зарядов в т. O попарно компенсируются, следовательно, согласно принципу суперпозиции результирующее поле также равно нулю;

- б) Точки любой плоскости слоя, параллельной плоскости симметрии, находятся в одинаковых физических условиях, в силу безграничности слоя. Следовательно, напряженность электрического поля должна быть одинакова в этих точках как по величине, так и по направлению;
- в) используя принцип суперпозиции можно строго доказать, что вектор \vec{E} в любой точке такой плоскости направлен перпендикулярно этой плоскости, а именно: если $\rho>0$, то он направлен от слоя, если $\rho<0$ к слою. Для определенности будем полагать далее $\rho>0$.



I. Вычислим напряженность электрического поля внутри слоя с помощью теоремы Остроградского-Гаусса, (26). В качестве замкнутой поверхности рассмотрим параллелепипед ABCDEFGH (см. рис. 11). Поток вектора \vec{E} через данную поверхность можно представить в виде:

$$\oint \vec{E}d\vec{S} = \int_{S_{ADEH}} \vec{E}d\vec{S} + \int_{S_{ABCD}} \vec{E}d\vec{S} + \dots + \int_{S_{BCFG}} \vec{E}d\vec{S} \tag{36}$$

Интеграл $\int_{S_{ADEH}} \vec{E} d\vec{S} = 0$ в силу утверждения а). Следующие четыре интеграла также равны нулю, поскольку вектора \vec{E} и $d\vec{S}$ взаимно перпендикулярны для данных граней (см. рис. 11) в силу утверждения в). Из утверждений б) и в) следует, что вектора \vec{E} и $d\vec{S}$ сонаправлены на грани BCFG, при этом величина вектора в точках грани постоянна, следовательно

$$\oint \vec{E}d\vec{S} = \int_{S_{BCFG}} \vec{E}d\vec{S} = \int_{S_{BCFG}} EdS = ES_{BCFG}.$$
 (37)

Заряд, содержащийся внутри параллелепипеда, определяется выражением:

$$q_S = \rho V = \rho x S_{BCFG}. \tag{38}$$

Подставляя (37) и (38) в (26), получаем:

$$ES_{BCFG} = 4\pi \rho x S_{BCFG}, \Rightarrow E = 4\pi \rho x.$$

Т.о. напряженность электрического поля внутри слоя изменяется по линейному закону с изменением расстояния до плоскости симметрии.

II. Вычислим напряженность электрического поля вне слоя (смотри рис. 12). Вид замкнутой поверхности, расчет и результат для потока вектора \vec{E} аналогичны предыдущему случаю (см. (37)). Однако электрический заряд q правой части (26) в данном случае определяется иначе, а именно, – это заряд, содержащийся внутри параллелепипеда ADJKLHEI:

$$q_S = \rho dS_{KJIL}, \Rightarrow E = 4\pi \rho d,$$

здесь учтено, что $S_{KJIL}=S_{BCFG}$. Т.о. поле E вне слоя постоянно как по величине так и по направлению. Нетрудно привести полученный результат к векторной форме.

Ответ:
$$\vec{E} = \begin{cases} 4\pi\rho \, x \, \vec{i}, & \text{при } |x| \leq d, \\ 4\pi\rho \, d \, \text{sign} x \, \vec{i}, & \text{при } |x| > d \end{cases}, \quad E = \begin{cases} 4\pi\rho \, x, & \text{при } |x| \leq d, \\ 4\pi\rho \, d, & \text{при } |x| > d \end{cases}.$$

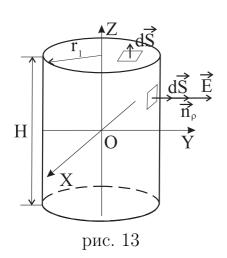
№ 2.П.5.[б] Цилиндрический слой (внутренний радиус R_1 , внешний – R_2) заряжен равномерно по объему с плотностью ρ . Найти всюду модуль напряженности электрического поля.

Решение

Данная физическая система обладает аксиальной симметрией и разбивает все пространство на 3 подпространства (см. рис. 8, слой в разрезе). Определим напряженность электрического поля в подпространстве І. Вычислим поток вектора \vec{E} через поверхность S. В качестве такой поверхности рассмотрим цилиндр радиуса r_1 , высоты H, ось которого совпадает с осью данного слоя (см. рис. 13).

Учитывая аксиально симметричный характер распределения электрического заряда и используя принцип суперпозиции электрических полей, можно строго показать, что а) вектор \vec{E} в любой точке пространства должен быть направлен вдоль цилиндрического радиуса-вектора $\vec{\rho}$ (\vec{n}_{ρ}); б) величина вектора \vec{E} одинакова во всех точках боковой поверхности цилиндра. Поток вектора \vec{E} через поверхность цилиндра представляется в виде:

$$\oint_{S} \vec{E} d\vec{S} = \int_{S_{\text{OCHOB}}} \vec{E} d\vec{S} + \int_{S_{\text{6ok}}} \vec{E} d\vec{S} = \int_{S_{\text{6ok}}} E dS. \tag{39}$$



Поток вектора \vec{E} через основания цилиндра $-\int_{S_{\text{основ}}} \vec{E} d\vec{S} = 0$, поскольку $d\vec{S}$ и \vec{E} здесь взаимно перпендикулярны, в силу утверждения а) (см. рис. 13). При вычислении потока через боковую поверхность цилиндра учтено, что здесь вектора $d\vec{S}$ и \vec{E} сонаправлены. Принимая во внимание утверждение б), поток можно представить так

$$\oint_{S} \vec{E}d\vec{S} = E \int_{S_{60K}} S = 2\pi r_1 HE. \tag{40}$$

Последний результат есть итоговое выражение для потока в случае аксиальной симметрии, см. (28).

Внутри цилиндра радиуса r_1 зарядов нет (см. рис. 8), т.е. $q_S^I=0$, следовательно, поле $E_I=0$ в силу произвола в выборе r_1 .

Рассмотрим подпространство II. Рассуждая аналогично предыдущему случаю, для цилиндра радиуса r_2 , поток вычисляем по аналогии с (40) с заменой $r_1 \to r_2$. Вычислим заряд q_S , содержащийся внутри цилиндра радиуса r_2 (см. рис. 8). Поскольку заряд равномерно распределен по объему цилиндрического слоя, то $q_S^{II} = \pi \rho H(r_2^2 - R_1^2)$, следовательно

$$E_{II} = \frac{2\pi k \rho(r_2^2 - R_1^2)}{r_2}. (41)$$

Наконец, в области III рассмотрим цилиндр радиуса r_3 . Очевидно, что $q_S^{III}=\pi \rho H(R_2^2-R_1^2),$ поэтому

$$2\pi r_3 H E_{III} = 4\pi^2 k \rho H (R_2^2 - R_1^2), \Rightarrow E_{III} = \frac{2\pi k \rho (R_2^2 - R_1^2)}{r_3}.$$

Otbet:
$$E = \left\{ \begin{array}{ll} 0, & r \leq R_1, \\ \frac{2\pi k \rho(r^2 - R_1^2)}{r}, & R_1 < r \leq R_2, \\ \frac{2\pi k \rho(R_2^2 - R_1^2)}{r}, & r > R_2. \end{array} \right\}, \quad \vec{E} = E \cdot \vec{n}_{\rho}.$$
 (42)

Замечание: на основе последнего результата легко получить выражение для а) поля цилиндра радиуса R, равномерно заряженного по объему с плотностью ρ ; б) поля нити, равномерно заряженной с линейной плотностью λ .

В случае а) необходимо учесть, что для цилиндра $R_1=0,\,R_2=R,$ тогда

$$E_{\mathfrak{I}\mathfrak{I}} = \left\{ \begin{array}{l} 2\pi k \rho r, & r \leq R, \\ \frac{2\pi k \rho R^2}{r}, & r > R. \end{array} \right\}, \quad \vec{E}_{\mathfrak{I}\mathfrak{I}} = E_{\mathfrak{I}\mathfrak{I}} \cdot \vec{n}_{\rho}. \tag{43}$$

В случае б) следует отметить, что нить можно рассматривать как цилиндр при условии $r\gg R$. Следовательно, линейную плотность заряда можно представить как $\lambda=\pi\rho R^2$. В итоге поле нити, согласно (43), представляется в виде:

$$E_{\rm H} = \frac{2k\lambda}{r}, \quad \vec{E}_{\rm H} = E_{\rm H} \cdot \vec{n}_{\rho}. \tag{44}$$

Аудиторные задачи

- **№ 2.А.1.**[б] Найти всюду напряженность электрического поля равномерно заряженной сферы с поверхностной плотностью σ и радиуса R.
- **№ 2.А.2.**[б] Найти всюду напряженность электрического поля бесконечной цилиндрической равномерно заряженной поверхности радиуса R с поверхностной плотностью σ .
- № 2.А.3.[б] Бесконечный цилиндр радиуса R заряжен по объему с плотностью $\rho = \rho_0(1 r/R)$, где r расстояние от точки цилиндра до его оси. Найти всюду напряженность электрического поля.
- № 2.А.4.[б] Внутри бесконечного круглого цилиндра, заряженного равномерно с объемной плотностью ρ , имеется круглая цилиндрическая полость. Расстояние между осями цилиндра и полости равно a. Найти вектор \vec{E} в полости.
- № 2.А.5.[б] Определить напряженность электрического поля внутри и вне безграничного плоского слоя толщины 2d, заряженного по объему с плотностью $\rho = \rho_0(1 x/d)$, где x расстояние от плоскости симметрии слоя до точки наблюдения.
- № 2.А.6.[c] В атмосфере Земли присутствует огромное количество однократно ионизированных атомов и молекул газов, слагающих ее. Зная химический состав атмосферы $(N_2-77\%,\,O_2-21\%,\,Ar-1\%,\,$ водные пары-1%) и предполагая, что все газы являются идеальными, а доля ионов для всех газов одна и таже, и равна $\eta=10^{-8},\,$ определить напряженность электрического поля, в атмосфере на высоте H от поверхности Земли (считать, что у поверхности Земли атмосфера находится при нормальных условиях).
- № 2.А.7.[c] Атом водорода в нормальном состоянии ведет себя в некотором отношении как точечный заряд +e, окруженный облаком отрицательного заряда с плотностью $\rho(r) = C \exp{(-2r/a_0)}$. Здесь a_0 боровский радиус, С-константа, величина которой выбирается такой,

чтобы общий отрицательный заряд был равен -e. Найти напряженность поля внутри сферы радиуса a_0 .

Домашние задачи

- № 2.Д.1.[6] Напряженность электрического поля зависит только от координат x,y по закону: $\vec{E} = \frac{a}{x^2+y^2}(x\vec{i}+y\vec{j}), \, \alpha$ -постоянная, \vec{i},\vec{j} -орты осей х,у. Найти поток вектора \vec{E} через сферу радиуса R с центром в начале координат.
- № 2.Д.2.[б] Используя теорему Остроградского-Гаусса найти напряженность электрического поля, создаваемого бесконечной равномерно заряженной нитью в точке наблюдения A, отстоящей от нити на расстоянии r. Заряд единицы длины нити равен λ .
- № 2.Д.3.[6] Система состоит из шара радиуса R, заряженного сферически симметрично, и окружающей среды, заполненной зарядом с объемной плотностью $\rho = \frac{\alpha}{r}$, где α -постоянная, r-расстояние от центра шара. Найти заряд шара, при котором модуль вектора напряженности поле вне шара не будет зависеть от r. Чему равна эта напряженность?
- № 2.Д.4.[6] Пространство заполнено зарядом с объемной плотностью $\rho = \rho_0 exp(-\alpha r^3)$, где ρ_0 и α -положительные константы, r-расстояние от центра данной системы. Найти модуль вектора напряженности электрического поля как функцию r. Исследовать полученное выражение при малых и больших r, т.е. при $\alpha r^3 << 1$ и $\alpha r^3 >> 1$.
- № 2.Д.5.[б] Вдоль оси цилиндрической поверхности радиуса R, равномерно заряженной с поверхностной плотностью σ , расположена равномерно заряженная нить. Какова должна быть линейная плотность заряда этой нити, чтобы поле вне цилиндрической поверхности равнялось нулю?
- № 2.Д.6.[б] Точечный заряд Q, находится в центре равномерно заряженного сферического слоя с радиусами $R_1, R_2(R_2 > R_1)$. Какова должна быть объемная плотность электрического заряда слоя, чтобы электрическое поле вне слоя было равно нулю?
- № 2.Д.7.[c] Доминирующим компонентом атмосферы Земли является молекулярный азот (N_2) . В результате столкновений молекул в атмосфере образуется огромное количество однократно ионизированных молекул этого газа. Предполагая, N_2 газ является идеальным, а доля ионов газа не меняется с высотой и равна $\eta = 10^{-8}$, определить высоту H от поверхности Земли, где напряженность электрического поля атмосферы максимальна.

Примеры тестовых заданий [а]

- 1. Поток вектора \vec{E} есть . . . объект.
- Ответ: а) скалярный, б) векторный, в) тензорный, г) спинорный.
- 2. Где должен находиться электрический заряд, фигурирующий в математическом выражении теоремы Остроградского-Гаусса по отношению к замкнутой поверхности, через которую вычисляется поток вектора \vec{E} ?
- Ответ: а) на данной поверхности, б) внутри данной поверхности, в) вне данной поверхности, Γ) на бесконечности.
 - 3. Дивергенция вектора \vec{E} есть . . . объект.
- Ответ: а) скалярный, б) векторный, в) тензорный, г) спинорный.
- 4. Для какой симметрии физической системы данная теорема мало эффективна при поиске электрического поля?
- Ответ: а) зеркальной, б) аксиальной, в) гексагональной, г) сферической.
- 5. Теорема Остроградского-Гаусса в дифференциальной форме есть ... уравнение Максвелла в случае, когда заряды находятся в вакууме. Ответ: а) *первое*, б) *второе*, в) *третье*, г) *четвертое*.
- 6. Поле какого объекта не зависит от расстояния до этого объекта? Ответ: а) $\partial u c \kappa a$, б) $\delta e c \kappa o h e u h o r o u u n u h d p a$, в) $\delta e c \kappa o h e u h o r o c h$
- 7. Поле какого объекта с ростом расстояния уменьшается как $\frac{1}{r}$? Ответ: а) $\partial u c \kappa a$, б) $\delta e c \kappa o h e u h o r o u u n u h d p a$, в) $\delta e c \kappa o h e u h o r o c h o$
- 8. Наличие сферической симметрии у системы подразумевает равенство ее физических свойств в точках, находящихся на одном расстоянии от
- Ответ: а) точечного центра системы, б) оси симметрии системы, в) плоскости симметрии системы, г) стороннего точечного заряда.
- 9. Наличие зеркальной симметрии у системы подразумевает равенство ее физических свойств в точках, находящихся на одном расстоянии от
- Ответ: а) точечного центра системы, б) оси симметрии системы, в) плоскости симметрии системы, г) стороннего точечного заряда.
- 10. Наличие аксиальной симметрии у системы подразумевает равенство ее физических свойств в точках, находящихся на одном расстоянии от
- Ответ: а) точечного центра системы, б) оси симметрии системы, в) плоскости симметрии системы, г) стороннего точечного заряда.

Задачи для самостоятельного решения

- № 2.С.1.[б] Определить напряженность электрического поля шара радиуса R, заряженного по объему с плотностью $\rho = \rho_0 \sin\left(\frac{\pi}{2}r^3/R^3\right)$, где ρ_0 константа, r расстояние от точки наблюдения до центра шара.
- № 2.С.2.[б] Две концентрические сферы с радиусами R_1 и R_2 ($R_1 < R_2$) заряжены равномерно с поверхностными плотностями σ и $-\sigma$ соответственно. Найти всюду величину и направление электрического поля.
- **№** 2.С.3.[6] Две коаксиальные цилиндрические поверхности с радиусами R_1 и R_2 ($R_1 < R_2$) заряжены равномерно с поверхностными плотностями σ и $-\sigma$ соответственно. Найти всюду величину и направление электрического поля.
- № 2.С.4.[6] Внутри шара, заряженного равномерно с объемной плотностью ρ , имеется сферическая полость. Центр полости смещен относительно центра шара на величину \vec{a} . Найти напряженность \vec{E} поля внутри полости.
- № 2.С.5.[б] Шар радиуса R заряжен по объему с плотностью $\rho = \rho_0(1-r/R)$, где ρ_0 -постоянная. Найти всюду модуль напряженности электрического поля, его масимальное значение E_m и соответствующее значение r_m .
- № 2.С.6.[б] Определить напряженность электрического поля внутри и вне безграничного плоского слоя толщины d, заряженного по объему с плотностью $\rho = \rho_0(1 \exp{(-x/d)})$, где x расстояние от плоскости симметрии слоя до точки наблюдения.
- № 2.С.7.[с] Из данных наблюдений околосолнечного пространства известно, что потоки протонов и α частиц (две из трех основных фракций солнечного ветра) распространяются в радиальном направлении от Солнца в виде цилиндрической трубки тока. Объемная концентрация каждого сорта частиц может быть описана функцией вида $n_i = n_{0i} \exp\left(-\alpha_i \rho^2\right)$ (для протонов i=1, для α частиц i=2), где ρ цилиндрический радиус-вектор, откладываемый от оси трубки, $\alpha_1 = 10^{-10} \,\mathrm{m}^{-2}$, $\alpha_2 = 10^{-8} \,\mathrm{m}^{-2}$. Определить напряженность электрического поля такой трубки, как функцию переменной ρ , если известен долевой состав фракций ($\eta_1 = 0.96$, $\eta_2 = 0.04$), скорость распространения частиц $V = 400 \,\mathrm{кm/c}$, плотность полного потока $j=3\cdot10^8$ частиц/(см²· с).
- № 2.С.8.[c] Опираясь на условия предыдущей задачи найти отношение электрических полей, создаваемых протонами и α частицами в отдельности на расстоянии r=100 км от оси трубки.
 - № 2.С.9.[с] На современных линейных ускорителях элементарных

частиц часто используют узкие линейные электронные пучки (цилиндрические трубки тока). Энергия частиц $E=500~\Gamma$ эВ, максимальная плотность потока частиц $j=3\cdot 10^{28}$ частиц/(см²· с); предполагается, что концентрация частиц в пучке, в зависимости от расстояния до оси пучка (ρ) определяется гауссовым распределением ($n=n_0\exp(-\beta\rho^2)$) с постоянной $\beta=10^8\,\mathrm{m}^{-1}$. Найти расстояние от оси пучка до точки наблюдения, где напряженность электрического поля равна $100~\mathrm{B/m}$.

№ 2.С.10.[c] У поверхности шарообразного катода малого радиуса в вакуумном триоде наблюдается термоэлетронная эмиссия. Оттоку электронов на анод препятствует задерживающий потенциал управляющей сетки, в результате чего около катода образуется сферически симметричное электронное облако, плотность которого меняется по закону $\rho = ar \exp{(-\gamma r^2)}$, где r-расстояние от центра шара до точки наблюдения, a, γ -константы. Считая, что данное облако дает основной вклад в результирующее поле вблизи триода, определить высоту над катодом, на которой будет зависать пылинка массы m и заряда -q (вся система находится в поле тяжести Земли).

	Вариант														
Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Nº 1	1	2	3	4	5	6	7	8	9	10	1	2	4	5	6
№ 2	6	7	8	9	10	8	9	2	3	4	8	6	1	9	3
Задача															
Nº 1	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3
№ 2	10	9	8	7	8	7	9	10	9	10	7	8	7	8	10

Таблица 2: список вариантов и соответствующих номеров вопросов и задач для самостоятельного решения настоящего параграфа.

Семинар № 3. Пондеромоторные силы. Электрический диполь

Семинар № 4. Потенциал и энергия электрического поля

Семинар № 5. Метод изображенийПримеры тестовых заданий